

BAUINGENIEURWESEN Arbeitsgruppe Experimenteller Baulicher Brandschutz

Dr.-Ing. Catherina Thiele

Project Number: EBB 170019_36en

Purpose: Assessment of resistance under fire exposure of the

SORMAT ITH-Ve, ITH-Wi injection system

Client: Sormat Oy

Harjutie 5

21290 Rusko, Finland

Contact: <u>www.uni-kl.de/ebb/</u>

Catherina Thiele

Tel: +49 631 205 3833

Date: 06.04.2020

Dr.-Ing. Catherina Thiele

C. Hivele

Table of contents

1.	General	3
2.	References	3
3.	Product Description	3
4.	Evaluation Scope	3
5.	Fire Resistances	4

1. General

The Technische Universität Kaiserslautern had been authorized by Sormat Oy to evaluate the fire resistance of the SORMAT ITH-Ve, ITH-Wi injection system. This report is based on the test reports of MPA Braunschweig [3]. The fire tests and their evaluation were executed according to DIN EN 1363-1:2012 [2] and [1].

The fire resistances (listed in Table 1) are based on the test results of a one-sided fire exposure of a non-cracked concrete slab. The evaluation in this report is based on TR 020 [1].

This document does not replace any proof of conformity or usability in the sense of building regulations (national / European).

2. References

- [1] Evaluation of Anchorages in Concrete Concerning Resistance to fire, EOTA TR 020, Edition May 2004
- [2] Feuerwiderstandsprüfungen Teil 1: Allgemeine Anforderungen, DIN EN 1363-1; Edition Oktober 2012
- [3] Test Report (3290/0966)-NB dd. 06/03/2008 ; iBMB Braunschweig; hinterlegt an der TU Kaiserslautern.
- [4] ETA-13/0774 from 13 November 2015, SORMAT ITH-Ve, ITH-Wi injection system; Sormat Oy.

3. Product Description

The Product is described in [4].

4. Evaluation Scope

The fire resistance evaluation of SORMAT ITH-Ve, ITH-Wi injection system is based on the executed fire tests. The anchors were installed upside down to simulate the real situation of a ceiling and stressed by the uniform temperature curve fire test (UTC) according to [2]. In all tests, a fixture was used based on TR020 [1], therefore the following fire resistance evaluation applies only for anchors which are protected (in a comparable manner to the used fixture in the fire test) against the temperature increase during a fire case.

The fire tests were executed on a non-cracked concrete slab.

The evaluation was executed depending on TR020 [1].

Nut failures, fracture of the anchor rod and pull-out failures occurred in the tests.

5. Fire Resistances

The following tables show the decisive fire resistances $N_{Rk,fi}$ of a one side fire exposure in non-cracked concrete with tensile loading (minimum strength class C20/25). The given fire resistances $N_{Rk,fi}$ apply for a single anchor under tensile load with an edge distance greater than $c_{cr} = 2$ h_{ef} and a spacing of at least s = 2 $c_{cr} = 4$ h_{ef} . to the adjacent anchor. By keeping the mentioned edge distances and spacing, a concrete cone failure is not relevant. The given values apply for anchor rods with a strength class of at least 5.8 (EN 1993-1-8:2005+AC:2009). The same fire resistances can be assumed for threaded rods of stainless steel (A4) and high corrosion resistant steel (HCR) with a strength class of 70 (EN ISO 3506-1:2009).

If the edge distance c is chosen in a way, that steel failure / pull-out is determined in the fire design, the following load values can be also applied on anchors under shear load.

Table 1: Fire resistance N_{Rk,fi} of SORMAT ITH-Ve, ITH-Wi injection system in non-cracked concrete slab

Fire resistance N _{Rk,fi}	Anchors Sizes	M8	M10	M12	M16	M20	M24	M27	M30
in [kN]	Minimum embedment depth h _{ef,min} [mm]	≥ 80	≥ 90	≥ 110	≥ 125	≥ 170	≥ 210	≥ 250	≥ 280
Fire resistance duration	30	1,6	2,6	3,4	6,2	9,8	14,0	18,3	22,3
t _u [min]	60	1,1	1,8	2,6	4,8	7,5	10,8	14,1	17,2
	90	0,6	0,9	1,8	3,4	5,3	7,6	9,9	12,1
	120	0,3	0,5	1,4	2,7	4,2	6,0	7,9	9,6